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ABSTRACT 

One application of distributed computing is remote system instrumentation. 

Such instrumentation programs require good response with low overhead to pr~ 

vide timely results without disturbing the system being measured. A remote pr~ 

cedure call system, such as the Circus system developed at Berkeley, allows pr~ 

grammers to write distributed programs with little more effort than is required to 

write local programs. This paper compare!! a Circus-based implementation or a 
Berkeley UNIXt tool (vmstat) with one based on the byte-stream protocol TCP. 

The Circus version makes for much cleaner code, but it requires more start-up 

time and higher CPU overhead than the TCP version. We conclude that the 

present incarnation or Circus is not acceptable for our work, but that future ver

sions of Circus should prove valuable. 

1. Introduction 

One application of distributed computing is remote instrumentation, which allows a user on 

one machine to monitor the performance or a different machine without logging on to that 

machine. Such a program consists or at least two processes: a data-gathering server process on 

the remote machine, and a data-displaying client process on the local machine. Ir only one server 

process is used, it multiplexes connections to all its clients. An alternative is to give each client 

process its own server process.1 In either case the communication system seen by the client and 

server clearly must guarantee the accuracy or a delivered message. In addition, we feel that the 

communication system should guarantee message delivery. A dropped message affects the client as 

though the remote machine had suddenly slowed to a crawl. Thus dropped messages would 

unnecessarily annoy users and possibly confuse analysis programs. This problem would be toler

able if messages were infrequently lost. Unfortunately, casual instrumentation or Ethernet inter

faces has shown input error rates (hence, dropped packets) or 50-100 or more per hour, which is 

simply too high to ignore. 

Furthermore, we want a communication system that is general enough that we can easily 

write distributed versions or existing tools or write new distributed tools from scratch. However, 

the communication system should also provide adequate performance in at least two areas: pr~ 

gram initialization and system overhead. Program initialization should be fast because we 

t UNIX is a tradenwk oC Bell Laboratories. 
This work was sponsored in part by the Defense Advanced Resurch Projects Agency (DoD), ARPA Order No. 

4031, monitored by the Naval Elfftronics Syste!DI Command under contract No. N0003~C-0235. The views 

and conclusions contained in this docu~nt are those of the author and should not be interpreted as represent.

inc official policies, either expressed or implied, of the Defense Research Projects Agency or of the US Gover

ment. Additional support was provided by the State of Calif'ornia MICRO program, 1fant number 532422 -

IGIIOO. 
1 Either technique allows the client the option of talkinc to multiple servers. 
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sometimes want the monitoring tools to tell us what is hap~ning now, not what is happening 10 

seconds from now. Long-term system overhead should be low enough that the tools can provide 

relatively long traces without disturbing the system being measured (e.g., less than 1% of the 

CPU should be used for the instrumentation program, and it should not cause any significant 

change to the system's swapping or paging behavior). For the same reason, short-term 

overhead-which we will not consider in this pa~r-should also be low. However, short-term 

overhead will be somewhat higher than long-term overhead because of initialization costs and 

because new UNIX processes usually get higher priorities than older ones. 

One reliable and general communication mechanism is the remote procedure call (RPC), 

which by and large allows the application programmer to ignore tbe distributed Mpects of the 

program. Eric Coo~r's Circu~ !Cooper 84a, Cooper 84b], which is based on Xerox's Lupine sys

tem !Birrell 83], is a remote procedure call system that runs under Berkeley UNIX 4.2BSD. Circus 

differs from an earlier Berkeley UNIX RPC system !Larus 83] in that it is based on datagram ser

vice rather than on virtual circuits. 

This pa~r evaluates the performance of a Circus-based version of vm~tat2 by comparing it 

with an implementation based on the byte-stream protocol TCP !TCP 81]. In the following sec

tion we present a brief introduction to what a programmer works with when using Circus and 

TCP on a 4.2BSD system. Section three describes the performance tests that were used. The 

results of these tests are described in section four, and an analysis of the results is in section five. 

In section six we present our conclusions, in section seven we suggest additional research, and in 

section eight we summarize the pa~r. Appendices A and B contain sample code from the Circus

and TCP-based programs (both client and server), with an emphasis on the differences between 

the two approaches. 

z. Programmer'• vtew 

Circus provides the UNIX programmer with a set of facilities that are like Lupine's, except 

that sor.~e changes were necessary for compatibility with the Berkeley UNIX environment. First 

the programmer defines an interface of types, global variables, and procedure beadings using a 

Mesa-like language derived from Xerox's Courier specifications !Mitchell 791 !Courier 81]. From 

this interface the rig compiler generates C code !Kernighan 78] for the server and client stubs, as 

well as a header file that contains C definitions for the types and variables specified in the inter

face. The programmer codes two programs, one for the client and one for the server. Taken 

together, these two parts differ little from a modular non-distributed version or the program. 

Most of the differences are embodied in a small amount of code that manages such chores as bind

ing the client to the server. A run-time library and the client and server stubs handle communic~ 

tion between the client, the ringma!ter binding process (which corresponds to Grapevine in the 

Xerox world), and the server. A programmer using Circus also bas the opportunity to program

matically type-check the client/server interface with the UNIX program lint. Relevant portions of 

the Circus-based vm!tat are in Ap~ndix A. 

As part of its Interprocess Communication (IPC) facilities !Leffler 83], 4.2BSD provides the 

Ut-.1X programmer with TCP service. In contrast with using Circus, a TCP-based program 

requires no extra paraphernalia such as rig (the stub compiler). The price is that the programmer 

must do more work, such as explicitly opening a connection between the client and server and 

managing I/0 errors. To handle multiple clients simultaneously, the server must either multiplex 

its connections or fork otl' a new server process to handle each new client. If there is a server pro

cess for each client, then the client bears the additional burden of telling its server to exit when it 

(the client) is ready to quit. At best, this additional work is merely an annoyance; at worst, it 

provides ample opportunity for programming mistakes. An additional problem with using TCP is 

that there is no way to verify the type-correctness of the client and server communication rou

tines, other than checking the individual read and write statements by band (which is also liable 

to mistakes). Relevant portions of the TCP-based vm~tat are in Appendix B. 

2 vmstr.t produces statistics about the virtual memory subsystem in Berkeley UNDC. 
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Thus, the most immediate advantage or Circus is its ease or use. Another expected advan

tage results from Circus' use or datagram communication: we expect lower start-up overhead from 

using Circus than we do rrom using a byte-stream protocol like TCP. An expected disadvantage 

or Circus is that its generality may make communication slower. For example, Circus allows 

transparent communication between different machine types, which may lead to unnecessary 

message-copying or rormat conversion in tbe case where both machines are or the same type. A 

realistic TCP-based implementation would also have to deal with this heterogeneity problem, but 

it may be possible to hand-tune the communication code to obtain greater efficiency than is possi

ble with Circus. 

In short, according to our introductory criteria ror a distributed monitoring tool, we expect 

that Circus would make an excellent tool ror writing remote instrumentation programs ir we could 

obtain adequate perrormance rrom it. 

3. The Testa 

We propose two types or perrormance tests: one test measures the elapsed start-up time 

required by a program; the other test measures the long-term CPU utilization or a program. The 

point or the start-up test is that any useful instrumentation utility must provide quick service 

without high initialization costs. The point or the utilization test is that any useful instrumenta

tion utility must not significantly disturb the system it. is measuring. 

Our first test consisted or running a program tha\, invoked vm.,tat 300 times and recorded 

the accumulated execution time. We perrormed this test on a V AXI 750 with 2 megabytes or 

physical memory running in single-user mode. In one case we performed the test 10 times with no 

competing load, and in a second case we performed the test 10 times while competing with a load 

or seven simulated "active" users.4 

The second test consisted or causing vm~tat to iterate {display one line or statistics) 10,000 

times at 5-second intervals. When the test finished, both the client and the server recorded inror

mation such as their elapsed times and CPU usage. We ran this test 7 times on a VAX 780 with 

4 megabytes or memory, at various hours or the day and night, without attention to machine 

load. We also ran a similar test-using 20,000 iterations instead or 10,000--to veriry that we 

could extrapolate our results to times longer than a day. We picked 5 seconds as the interval 

length because the Berkeley UNIX kernel updates its virtual memory statistics at 1- and 5-second 

intervals. We did not repeat the tests using a 1-second interval because, as we shall see in the 

next section, the CPU utilization at the 5-second refresh rate was high enough that additional 

tests seemed pointless. 

4. Result• 

The results or the first test are summarized in Table 1. Each number represents an average 

start-up time in seconds. We also repeated the start-up tests 3 times with the original (single

process) version or vm~tat ror rough comparison purposes. 

Table 1: Start-up times for TCP- and Circus-based versions 

version with load no load 

Circus 4.63 1.36 

TCP 1.14 0.708 

original 10.2 2.04 

Table 2 gives the results for the second test. We obtained these numbers by compiling code 

into the vm~tat client and server so that each program recorded its elapsed ("wall-clock") running 

3 VAX ill a trademark or Di&ital Equipment Corporation. 

4 Each Wier wu llimulated by a 1hell acrip\ tha\ repeatedly did tasb auc:h u c:ompil&tion, editin&, and tile 

c:opyin,. 
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time and its system and user CPU requirements. We calculated the "percent or system used" as 

the sum or the CPU time used divided by the elapsed time. Notice, however, that we ignore the 

requirements of ringma.!ter (the binding process) for the Circus version, and we ignore certain 

one-time start-up costs for both versions. Again, we also repeated the test a few times with the 

original vm.!tat for rough comparison purposes. 

Table 2: Long-term CPU utilization 

system time user time %of system 

(sec) (sec) used 

Circus client 332.4 190.6 1.01 

Circus server 437.4 123.6 1.09 

Circus (total) 
2.10 

TCP client 50.3 108.7 0.32 

TCP server 176.6 .f7.0 0.44 

TCP (total) 
0.76 

original (total) g7 117 0.44 

6. Analy•l• 

Having seen these results, we now must interpret them. 

6.1. Start-up Delay 

Table 1 shows that the TCP version or the program consistently starts up faster than the 

Circus version. This result may seem surprising, as byte-stream protocols have a reputation for 

high overhead in establishing connections. However, the protocol-related activities may only be a 

small part of all the program's activities. Using the gprof profiler !Graham 82J, we see that for 

one run of 100 iterations, the TCP-based client spends 30 ms (1% or its total CPU time) esta~ 

lishing a connection; the Circus-based client requires less than 10 ms (0.2%) of CPU time to con

nect to the server. However, to find a server, the Circus-based client must send a message to ring

ma.!ter and then wait for a reply, which is entirely transparent to gprof and is presumably slow. 

Contrast this with the TCP-based version, which spends 100 ms looking up the server's Internet 

address in a well-known file. Thus, we hypothesize that the Circus-based client process requires 

less CPU time than the TCP-based client, but it requires more elapsed time because or client

server binding. 

Both versions are much faster than the original version of vm.!tat. We obtain this savings 

because the original version does an nli.!t, which tells where the interesting numbers live in kernel 

memory, each time it is invoked. Both or the experimental versions do only one nlist, when the 

server is started up, and they re-use that information when a new client executes. Thus the com

parison between the original and experimental versions is biased, but it points out an advantage or 

using the client/server paradigm for UNIX instrumentation programs. 

&.J. CPU Utlllzatlon and Steady-State Delay 

As with the first test, the Circus version performs worse than the TCP version: it uses about 

3 times as much or the CPU as the TCP version does. There are many causes for this difference, 

some or which are inherent to an RPC system, some or which result from Circus's design, and 

some or which result from Circus's implementation, which is untuned and entirely at the user 

level. One inherent problem of the RPC-based system is that it must send a message to the 

server for every information message that the server sends back. In the TCP-based system, the 

server just keeps sending information until the client sends one message ending the link. Gprof 

analysis suggests that the Circus-based client can spend up to 14% or its time (ie., 0.14% or the 

CPU) just sending these request messages. Also, the Circus-based version incurs extra byte

copying costs (compared with the TCP-based version) in parameter passing. This copying comes 

11 
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from moving whole structures around; the TCP-based version just moves pointers. 

There is another problem that is not inherent to RPC systems in general but which results 

from Circus's charter as a reliable remote procedure caD system. Circus allows more than one 

process to export a given service. When a client makes a remote caD, the client stub sends 

requests to all servers that export that call and uses a voting scheme to determine the result that 

it returns. Circus does provide a mechanism that allows the client to specify which server (or 

servers) to use. However, the techniques necessary to handle communication in the general case 

(multiple servers) can have appreciable cost even when only one server is called. Thus remote 

instrumentation programs, which do not need this replication mechanism, must bear this added 

cost when using Circus. 

The lack or tuning in Circus leads to problems such as unnecessary malloc (memory alloca

tion) calls, expensive queueing operations, and unnecessary copying. The mallocs are done at each 

call, when the client stub allocates and returns buffer space. The stub could avoid these problems 

by maintaining its own pool or buffers. The queueing operations, which support communication, 

could probably be made less expensive by using register variables !Kernighan 78]. Although any 

general-purpose communication mechanism must provide machine independence, it seems reason

able for the stubs to recognize that they are running on compatible architectures and agree to use 

that architecture's data format, rather than wasting cycles converting to and from some general

purpose rormat.5 

There are two good reasons for putting Circus's reliable, procedure-oriented communication 

protocol in the kernel.8 Because Circus runs entirely in user space, it must implement timeouts 

using the alarm library routine, which means that Circus preempts SJGALRM signals. The first 

problem is that this preemption forces users who want an alarm-clock function to use an 

inefficient kludge. The second problem is one or performance. When the stub sends off a request, 

it must make at least four system calls: the first call sends the request, the second call sets the 

alarm, the third call (select) waits for a reply from any or the servers, and the fourth call finally 

reads in the result. Each additional server requires two additional system calls. A kernel-based 

implementation of Circus would avoid both or these problems. 

e. Conelualona 

The purpose or the preceding tests was to evaluate a Circus-based remote instrumentation 

program. These tests lead us to conclude that Circus's current incarnation is not ready for use in 

production programs. The problem is not the slower elapsed start-up time or the Circus-based 

version, which is negligible (and certainly faster than the original version or vmstat). A more seri

ous problem is the CPU overhead that Circus requires, which is twice our 1% guideline. For

tunately, tuning the performance or Circus, removing the replication mechanisms, and moving the 

communication code into the kernel should solve this problem. We predict that once this task has 

been done, Circus will be an excellent tool for distributed monitoring programs. In the meantime, 

programmers will have to balance their desperation for such a distributed program against the 

pain or writing a program based on TCP. 

7. Addltlonal Reaeareh 

While this paper provides generally encouraging results, additional work should be done to 

confirm our optimism. In particular, we would like to repeat these tests using the non-replicated, 

kernel-based version of Circus being developed by Karen White !White 85J, after it has been as 

thoroughly tuned as the Berkeley UNIX TCP implementation. 

Furthermore, there are metrics other than the ones that we have chosen. The most obvious 

candidate for additional testing is memory usage. A server with a large working set size (e.g., 

5 The desip Cor a new version ~ Circua induds thil rtub-t.o-nub handshake and a fix Cor the bu«er spaee 

problem. 

• "relia.ble" u in "IU&ranteed delivery c:l uneorrupted data," not as in "replicated." 
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from buffer requirements) will certainly disturb the system which it is trying to measure, even if 

its measured CPU utilization is low. 

8. Summar)' 

Having identified an interesting class or distributed computing programs (remote instrumen

tation), we have decided on certain performance requirements and a possible technique Cor writing 

programs that belong to that class (remote procedure calls). We have built a realistic example 

program using this technique (by modifying vmstat), and we have obtained encouraging results by 

comparing this example program with a version based on a different technique (TCP). We expect 

that as Circus, a UNIX implementation of this technique, is refined, it will compare favorably with 

its competitors. 
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Appendb Az por"on• of the Clrcu.-bued Ymdat 

1.1 10/18/84 

vmmeter: ';ype - record I 

); 

v swtch: loas cardiaal, 
v -trap: loas cardiaal, 
v:=syscill loas cardlaal, 
v intr: loas cardlaal, 
v-soft: loas cardiaal, 
v-pdma: loas cardiaal, 
v =pswpin: loas cardiaal, 
v pswpout: loas cardiaal, 
v =pgin: loas cardiaal, 
v pgout: loas cardlaal, 
v-pgpgin: loas cardlaal, 
v-pgpgout: loas cardiaal, 
v-in trans: loas cardlaal, 
v-pgrec: loas cardiaal, 
v:=xsfrec: loas cardbtal, 
v xi!ree: loas card.iaal, 
v:=e~od: loas cardiaal, 
v zfod: loas cardiaal, 
v-vrfod: loas cardiaal, 
v-nexfod: loas cardlaal, 
v-nzfod: loas cardiaal, 
v-nvrfod: loas cardbtal, 
v-pgfrec: loas card mal, 
v :=raults: loas card mal, 
v scan: loas cardbtal, 
v-rev: loas cardbtal, 
v-seqfree: loas cardiaal, 
v-dfree: loas cardiaal, 
v -fastpgrec: loas cardlaal, 
v =swpin: loas cardiaal, 
v_swpout: loas cardiaal 

vmtotal: ';ype - record 
t_rq: U.'epr, 
t_dw: iB'eser, 
t_pw: bt'epr, 
t_sl: iD'eser, 
t_sw: ia'epr, 

); 

t_vm: loas U.'epr, 
t_avm: loas ia'epr, 
t_rm: iat.eser, 
t_arm: ia'epr, 
t_vmtxt: loas iB'eser, 
t_avmtxt: loas ill'eser, 
t_rmtxt: ia'eser, 
t_armtxt: ill'eser, 
t_free: la'eser 

forkstat: ';ype - record I 
cnt!ork: loas ill'eser, 
cntvfork: loas blt.eser, 



ead. 

J; 

sizf'ork: loa11 la&e~~er, 

sizvf'ork: loa11 la&e~~er 

- 0 -

doubleFloat: \TIM - UT&J' 2 of loa11 la&e~~er; 

CPUSTATES: la\epr - 4; /rom <•p/dlc.ll> 
DK_NDRIVE: laie!~er - 4; from <•p/dlc.ll> 

VMSTATS: '~ - record I packafe of virtual memorr •t•t• 

busy: loa11 la\epr, 
time: UT&J' CPUSTATES of loa11 la\ecer, 

:lifer: arr&J' DK_l\'DRIVE of loa11 la\epr, 

Rate: vmmet.er, 

J; 

Total: vmtotal, 
Sum: vmmet.er, 
Forkstat: rorkstat, 
rectime: loa11 carcllaal, 
pgintime: loa11 cardiaal 

disk drive: \TIM - record 
- name: e\rla11, 

unit: la\ecer 
J; 

Time_t: '~ - loa11 la\ecer; 

vm_init: 

J; 

\TIM - record I 
drive: arr&J' DK NDRIVE 

hz: loa11 ia\ep;, 
phz: loa11 la\epr 

vm_info: \~ - record 
time: Ti~ _ t, 

J; 

s: VMSTATS, 
deficit: loa11 la\epr, 
etime: doubleFloat, 

nintv: loa11 la\epr 

- info /or lid drivu 

initial mu•a1e to dimt 

of disk_drive, 
dock rate 

- profilinf doclc ratef 

regular VM .tat• info 
time that numben wen 1ottm 

anticipated memorr leficil 

vrnstat_inro: procedure tr!T!'tC&!l: booleaa) re\arae 

rmroPkt: vm_in!o); 

vrnstat_init: procedure re\urae fmitPkt: vm_initJ; 
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#ifadef lint 
alatic daal' "scc:sid2 - •O(#)vn¥tat.c 

'lfoeadif 

#iaclade 
pel a de 
#iaclade 
#iaclade 
#i.aclade 
#i.aclade 
#defiae 
#defiae 
ofderlDe 

<sys/pa.ram.h> 
<stdio.h> 
<strinp.h> 

<sysfnn.h> 
<sysldk.h> 
"vmstat_de!s.h• 
HOSTNSIZE 255 

YES I 
NO 0 

ot HZ; 
cllal' bost[HOSTNSIZE); r name of tAt lo.r 10t want to tall to • I 

r Sfeep time between refruAu • I •••iped st~; 
vm init initPkt; r init paelet • 1 
vm=:inro inf'oPkt; r info paelet Jo" one call • 1 

#derme INTS(x) ((x) - (u + phs)) 

r 
• Print VM •tati•tie•, •.inf • remote •tf'Wf' to collect tlt ~.U. 

• U•u Ef'ie CooJ~eF·• Ciret.~• /of' RPC . 
• I 

main(a.rgc, a.rgv) 

{ 

lat a.rgc; 
c .... ••a.rgv; 

iat lin~; 

lat iter; 
e:dera c•al' _sobuf0; 
boole&n n.rstCall; 

r eount linu /or Aeadmnf • I 
r nul'!'lbef' of ittf'ation• to male • 1 

if (a.rgc > 1 && strcmp(a.rgv(l], "-t") -=- 0) { 
set_ trr.ce _ fla.p( a.rgv[2)); 

argc -=- 2; 
&rgv +- 2; 

} 

setbul'{stdout, _sobuf); 

st~ - s; r default tleep time • 1 
(void) gethostna.me{host, HOSTNSIZE);J• default lt.o.t: '" • I 
argc-, argv++; 

r 
• Figure out how manv ittf'ation• to mde and lt.ow lon1 for eaelt. 

• refre•lt.. If no nul'!'lbef'• wtf'e given, &nlv ittf'att 1 time. I/ 

• &nlv a refrnA in!tn~al we~~ given, ittFate forttJtf'. Othtntri•e, 

• the u•tf' will tell u• how manv timu to ittFate. 

.I 
if (a.rgc < I) 

iter - 1; 
elM { 

st~ - &to~ a.rgv(o]); 

ll (a.rcc - 1) 
iter - 0; e._ 
iter - ato~a.rgv(l]); 

} 

mazn 
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r 
• Impori tAe wnnat inter/a« an~ ft!l 1-time in/o abo.t tu dodl 

• rate an~ ~rivu. 
•; 

~t trou~ list(t, host); 
if (!import:_vmst&t.()) { 

) 

fprint!(stderr, "ean 't import vmstat\n"); 

exit.( I); 

initPlct - vmst&t_init.(); 
HZ - initPlct.phs T initPlct.phs initPlct.h•; 

rirStC&ll - YES; 

reprint: 
lines - 20; 

print!("\ 
procs mermry %-18.18s pace disk faults epu\n\ 

r b w &vm fre re &t pi po fr de n- %c%d %:%d %c%d %:%d in ry cs us ry id\n", 

host, 
iDitPlct.drive(O).na.me(O), iDitPlct.drive(o).unit, 
iDitPlct.drive[l).na.me(O), iDitPlct.drive{l).unit, 
initPlct.drive(2).na.me[O), initPlct.drive(2).unit, 
iDitPlct.drive(3).na.me(O), iDitPlct.drive{3).unit); 

loop: 

) 

infoPlct - vmstat info(riTStC&II); 
rirStC&ll - NO; -
displayinl'o( &infoPlct); 
if (-iter - 0) { 

exit.(O); 
) 
&O_to_sleep(stime, 0); 

ll (-lines <- 0) 
p~ reprint; 

p~ loop; 



#if'ader lint 
eLa&ic daar scesid0 - "C(*}vlmtatd.c 
#eadir 

#iJaclade <stdio.h > 
#faclade <strinp.h> 
#i.aclade <5Y5fioctlh> 
#iJaclade <sysjparam.h> 
#indade <sys,f"lle.h> 
#iaclade <5Y5/vmh> 
#i.aclade <5Y5Idk.h> 
#iJaclade <nlist.h> 
#i.aclade <sys~uf.h> 
#i.aclade <sysjwait.h> 
#i.aclade <sys/time.h> 
#iaclade <sysftesource.h> 
#ifdef vu 
#iaclade <vaxubafobavar.h> 
#i.aclade <vumbajmbavar.h> 
#eadif 
#iadade 
#derlDe 
#derme 

r 

"vmstat de!s.h" 
YES 1 
NO 0 
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• nit prOf"llffl timplf providu ..Jwcrutinu tvhiefa t/ee tlif!ftl eall1 Wll lin 

• RPC mech11ninn. Vmrt11t_init it clllled onee (per tlimt), 10 tht tve 

• don't worte time retronrmittin1 rqetiticrur information (eJ., tloell 

• rote). After thot, vm~tot_info i• tolled ftltf'J time 11 tlienl tv11nt1 new~ 

• information . 
• I 

enera i.a& errno; 
aaaiped stime=l; 
t~_t boott~; 

vm info &vglnfo; 
vm:inf"o runninglnfo; 
vm_init initPkt; 
vm_inf"o inf"oPkt; 
t~_t lastRerresh~; 

t~_t now; 

m&in(argc, arrv) 
Ill& argc; 
daar •arrv0; 
{ 

.. , i; 
t~-t initialize{); 

il (argc > 1) 
st~ - ato~arrv(t)); 

boott~ - initialize(); 
refresh(); 

il (!export_vmstat()) { 

r boottime to nOUI lltltrllfU • I 
r nmnint rote• • 1 
r poelcet of init info • 1 
r poelctt of regular info • 1 
r time of to.t refre•l • 1 
r (the eurrmt timeJ • 1 

r 1tt t~oelc, tlirle drive info • 1 
r reotl 1.t ret of vllluu • 1 

Cprint.l'(stderr, "caD 't export vmstat\n"); 
exit( I); 

} 

r 
• Dirurocilltt ourrtlvu fram our pormt. ni. it upuillllr 

• needed if rov ute rrl to .tort up the ttrtJtr. 

'I 
#if'adef noOrpha~~ 

mazn 



#eadif 

} ,. 

• IS • 

server _loop(); 

• Gd tlae nomtlin /or tlae lctmel an~ ~o •nr one-time rutling of lctmel 

• memorr. Rdum tlae •r•tem 6oot time, •n~ ld .,OUI. to be tlae ctarrml 

• time. 
•; 

time \ 
initi~e() 
{ ,. ... •; 
} ,. 

• Stntl inititJl tlota to tlae dimt: dod! rate an~ ~i•lc info. 

• Be ture to upda.te our bufler• if VIe 1aven •t been e.llu in • long 

• time. 

'I 
vm init 
~at init{) 
{ -

} ,. 

If (tirne(&now) - lastRe!resh >- stime) { 

lastRe!resb - now; 

refresh(); 

} 
"'•ra(initPkt); 

• Stntl a me1111ge with tlae ~~m~t11t in/o in it. The &rJUmtnt rpui/iu 

• wlattlatr tlai• ie tlae dient • 1 firet toll. If it i1, tlae ltrvtr 11&ouU 

• give a.vtra.ge number• (a.vtrtlgttl nnee •yetem boot). Ot.latrwilt, 

• the eervtr ehoultl give the going rate. 

'I 
vm info 
~at_in!o(flrstc&!l) 
boolean r JJ"Stcall; 

{ 

} ,. 

if (time(&now) - lastRefresb >- rtime) { 

lastRe!resh - now; 

refresh(); 

} 

if (fu-stc&!l) 
bcopy( &avglnfo, &in!oPkt, alseof(vm_in!o)); 

elae 
bcopy(&runninglnfo, &:infoPkt, aiseof(vm_in!o)); 

rdara( infoPkt ); 

1 Re/rula tlae •a.vglnfo • an4 •runningln/o • bul/trl. Ueu tlae f(ob.l 

1 eu rrent time (.,ow •). 

'I 
refresh() 
{ 

} 

time-t in terva.l; 

in tervaJ - DOW - boottime; 

getinfo(interval, &avgln!o, &runningln!o); 

£nit£alize 

vmstat_in£t 

vmstat_info 

refresh 
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Appendb Ba portion• of the TCP-b&8ed •mdat 

!.I 

#d_eraae VMSTAT_EXIT ·x· 
#d_eraae ERRLOG •vmnatd.errlol" 

r mu•are.· lriU the ev,.,.ml emanution • I 
r ~or lof for the Imler ~aemon • I 

i.a' busy; 
loaK time!CPUSTATES); 
loaK :d'er(DK_NDRIVE); 

•'r•c' vmmeter Rate; 
•b•d vmtotal Total; 
•'rae' vmmeter Sum; 
•'r•c' forkstat Forkst&t; 
aaaiped rectime; 
•••iped pgintime; 

} VMSTATS; 

r 
• 1\e t~ariable• in the foliOV!inr 6loeJr are all •ml to tu client at 
1 one time or another. 

'I 
cllar dr_na.me(DK_NDRIVE)[IO); 

claar dr_unit(DK_NDRIVE); 

i.a' ph:; 
i.a' b%; 
VMSTATS r, 
time - t now; 

i.a' defieit; 
doable etime; 
aa•iped stime; 

i.a' nintv; 

#defiae rate 
#defiae total 
#defiae sum 
#defiae forkst&t 

r 

s.Rate 
s.Total 
s.Sum 
s.Forkstat 

r .teq time a• •peafiu br emnmon~ line • 1 
r now - boottimt {lit ,. .. rml11rl 

1 INITBUFSIZE i1 the num of bJ!tu nttdet to INfler the initialization ~ata: 

1 tlr name, tr unit, pl&z, an~ h. 
1 MESGBUFslZE i1 the num of bJ!tu neuu to bulfer one mu••re: 

• now, 1, tltficit, etimt, ant ninttJ. 

'I 
#defiae INlTBl"FSIZE (lO"DK_I\'DRIVE'aiseoftclaar) + DK_NDRIVE'•iseoftdtar) \ 

+ aiseoft i•') + •iseoftia')) 
#defiae MESGBl'FSIZE (•iseofttime_t) + aiseof!.VMSTATS) + •iseoftia') \ 

+ •iseoftdoable) + •iseofl.ia')) 

claar vtn5_initbuf(IN1TBUFSIZE); 

claar vtn5_mesgbuf(MESGBUFSIZE); 
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#ifadef lin~ 
•'-'lc claar ~ccsid2 - •O(*)vrmtat.c 

~adil 

#faclade <sysjpanm.h> 
f:baclade <sign alb> 
#iaclade <netdb.h> 
#faclade <stdio.h > 
#iaclade <strinp.h> 
#illclade <sysf;m.h> 
#iaclade <sysldk.h> 
f:baclade <sys/socket.h> 
#iaclade •vrr.;tat.h• 
#defiae HOSTNSIZE 100 

#def"me YES I 
#def"me NO 0 

HZ; 
host(HOSTNSIZE); 
10ck; 

#def"me INTS(x) ((x) - {hs + phs)) 

r 

r name of tl&e ~&on .,e .,.rat to tali to • 1 
r lOUd /or tallcin, to tl&e lmJtr • I 

• Print VM 1t11li•tiu, tuin1 • remote tmJer u eolleet tl&e ut• • 

• I 
main(&riC, arr) 

{ 

W' &riC; 
claar ·~r; 

ill' lines; 
ill' iter; 
ex\era claar _eoburtJ; 

r eount linu /or l&u4crin1 • 1 
r number of iter11tim• to 1'7111ie • 1 

•\rad hostent 'hp - NULL; r point• to holt ~ucriptim • I 
ill' soc:kopen(); r opm• • ,,u~cet COftneetim to tl&e 1tr11er • 1 
ill' quit.(); 

(void) signal(SIGINT, quit); 
(void) signa.l(SIGHUP, quit); 
setbuf(stdout, _10buf); 

stime - S; 
(void) &ethostn~host, HOSTNSIZE); 

host(HOSTNSIZE-t) - "\0'; 
hp - 1ethostbyn~host); 

&riC-, arr++; 

I. 

r (4t/llult - l&olt .,e·re m) .I 

• Figure out ltt1V! rMnJ i!trtJ!itm• to mde an4 l&t1VJ ltml for ucl& 

• rt/red.. 1/ no number• wert given, tmlr ittr11te 1 time. If 

• tmlr a re/re•l& in!mJal wa1 Jivm, ittrate forevtr. Otltt1'Wi1t, 

• tlte Ult1' will tell Ul l&t1VJ m~~nr timu to ittrate. 

•I 

if (ar&e < 1) 

} 

iter - 1; 

stime - ato~ arr(o)); 
if (&riC - 1) 

iter - 0; 

sock sockopen(hp, •vmstat•); 

r eto•e enou1l to in/init1... • 1 

. 
mazn 



reprint: 

• Ul • 

r 
• Ttll tl&e 1nwr I&DVI ltml to lleep •n~ ftl anitalll (1-time} 

• info. 
•; 

write(sock, (claar ")&:!time, alseof stime); 
recv _ init( sock); 
HZ - ph1 T ph1 : hs; 

lines - 20; 

procs memory %-18.18& P&«e disk f&ulw cpu\n\ 
r b w &vm rre re &t pi po rr de sr %c%d %c%d %c%d %c%d in ~ cs ut ~ id\n•. 

h~ 
dr_n&me(o)(o), dr_unit(O), dr_n&me(1)(oJ, dr_unit[1J, 
dr _ n&me[2J[OJ, dr _ unit[2), dr _ n&me[3J[O), dr _ unit[3)); 

loop: 

} 

r 

recvint o( sock); 
disp I &yin! o( ); 
if (-iter - 0) { 

cle&n up( sock); 
exit(O); 

} 
if (-lines <- 0) 

pia reprint; 
pia loop; 

• Cote/& a SIGINI' •n~ quit. 
•; 

quit() 
{ 

} 

cle&n up( sock); 
exit(O); 

r 
• Ttll the lmJtF tl&tst we •re l.tme; flu•/& anr ~ate rtmGininf in 

• the connectitm. 
•; 

claar quitnow0 - VMSTAT_EXIT; 

cle&nup( L'!Ock) 
ia' &sack; 
{ 

} 

claar fbuf(40118); r bufltF for J!u•Ain1 u,e connection • 1 

if (send(&sack, quitnow, aiseof{quitnow), MSG_OOB) < 0) { 
perror("vmst&t: sendin1 quitnow"); 
exit( 1); 

} 
wlaUe (re&d(&sack, fbuf, alseol fbul) > 0) 

(void) close(a.sock); 

quit 

cleanup 



#ifadef lint 
•'-'ic claar sccsid0 - "a(#}vmn~td.c 

~·dif 

#iJaclade <signal.h> 
f:iadade <sysftime.h> 
f:iadade <!YS.tflle.h> 
#iJaclade <netdb.h> 
#iaclade <st.dio.h > 
f:iaclade <sysfioctLh> 
#iaclade <!YS/Pa.n.m.h> 
#iaelade <netinetfin.h> 
#iaclade <errno.h> 
#iaclade <sysJsod:et.h> 
#iaclade <sys/vm.h> 
#iaclade <sysldk.h> 
#iaclade <nlist.h> 
#iaelade <sys,A>w.h> 
#iaclade <sysjwait.h> 
#iadade <sys/resource.h> 
#ifdef va.x 
#iaclade <vuub~fub~vv.h> 
tfiaclade <va.xmb~jmb~vu.h > 

#e•dif 
#iaclade <st.rinp.h> 
#iaclade "vmst~t.h• 
#defiae YES I 
#deraae NO 0 

r 
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• Thi• JI"Of"llm eY"e11te• • •oclltt, l.ou lllfm initi.Z rul.int of tAe 

• leeY"ntl mcnory, one tAm bqin• an infinite loop. 
1 Each tirm tltr01lgl& tl&e loop it accept• • C#l'lnection ani. forll• off 

1 11 child to monage it. The clt.ill. nmplr 1md1 vrmtat number• tlt.ru it. 

1 Mm the tlimt ttll• the chill. to tuit, tlt.e child tlo•u tle 
1 old C#l'lnection and uit1. 

'I 

ill' msgsock; 
e:dera ia' errno; 

main() 
{ 

ia' ~ 
ill' sock; 
ill' reaper{); 
time t boottime; 
time-t initialize(); 

ia' ~rvsock(); 

sock - servsock(~vmst~t"); 

boottime - initia.lize(); 
(void) signal( SIGCHLD, re~per ); 

r 

r •tt• up • IOclld for the lmle?' • I 

• Dtnuocicte ourrtlvu from our psrmt. Tli• t. upecillllr 
1 nude« i/ JIOU ure rrl to rtcrl up tle lmlef'. 

'I 
#ifadef noOrphu 

#eadif 
r ... 'I 

r 
I Stet( IJCeepiinf C#l'lnedionl. Tle lleeepl miglt /ail if U/e gd 

• intef'f'Uptee br • cAiltl• r ezitinf. If thir laPJJmr, jurt trr 
1 again. In cere of an unezpeau error, we psu1e /irrt ~/ore 

mazn 



} 

r 
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• rdf'Jiinf. Tlm! it • B-foU motive /of' tlit: (1) Jivm tllf7W 
• bf'utlain1 f'Oom, malj6e tle llemtl Ulill fd itt ad to1etle.. an4 
• tAm we won •t fd tle tame ef'f'Of' •1ein. {t!} at lurt tle ef'f'Of' 

• /of file 111on •t lf'DIII •• f'IJpitllr. 
•; 

(void) lis1.en (110ek, 6); 
for (;;) { 

} 

~gsoek - aeeept{!IOCk, (•& ... d 10chddr ~. (Ia' ~); 
if (rnspock < 0) { 

} 

if (errno 1- EINTR) { 
perror{"vmrtatd: accept"); 
1leep ((aaaiped) 6); 

} 

if (fork() - 0) { 

} .... 
(void) eloee{!IOCk); 
doTheDirtyWorlc(boottime); 

(void) eloee(mspoek); 

r feAiltiJ •1 

• Wait •ntil • elt.iltl proea1 e:ritt . 
• I 

reaper{) 
{ 

} 

r 

aaioa wait status; 

wlaile (wait3{&status, WNOHANG, (•&rae\ rus&«e ~) > 0) 

• Get tlae nemtlirl for tlae lremtl anti tlo anr one-time rutlin1 of 
• lremtl memDf'JI. Retum tlae rv-tem boot time. 

•; 
time t 
initialize() 
{ 
r ... -~ 
} 

r 
• T/ae elailtl firrt reetlr tlae lleep time (ie., tle nmpinr rete} cnll 
• rmdr initial in/ormation rue/a •• tlae device ncmu, t/aeir "vnit •,, 
• anti IC1f'm eloelr info. It I lam ruelculelu lDUI I on, it., bem nnee 

• rvrtem boot (tlair ir uretl once, ro tlaat we un ret lle long-tef'm 
• eve..efe relu nnu boot lime; eft e.. 1/ael, we ure tlae currmt rater). 
.I 

doTheDirtyWork(boottime) 
time t boottime; r •v-tem boot lime • 1 
{ -

Ia' oob(); 

(void) sip~SIGURG, oob); 
{ia' pid - -,etpid(); 

r et~telt.u SIGURG • I 

(void) ioet~mspoek, SIOCSPGRP, (dtar ")l:pid);} 

send_ in it(); 
read(msgsock, (dtar ")l:stime, •i•-r lltime); 

(void) time(.how); 
nintv - DOW - boottime; 

reaper 

initialize 

doTheDirtylVork 



} 

r 

for (;;) { 

} 

~tinto(); 
tendinto(); 
•leep( stime ); 
niDtv - 1; 
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• Catcl • SIGURG: rul. in •nl. ,woeu1 • mu•afe /rom tile client. 

•j 
oob() 
{ 

} 

r 

claar &buf'{t); 

(void) reC'Y{m!p>ck, t.buf', aiseof t.buf', MSG_OOB); 

nri\cla (t.buf'[O)) { 
caH VMST AT EXIT: 

} 

(void) eloee(rmp>ek); 
exit(O); 
break; 

(printl(stderr, •vrmt&t.d: unknown request: o%o\n•, t.buf'{O)); 

break; 

• Pr.elca1e the eollutel. info in • flul/er •nl. 1ml. it ofl to the client. 

•; 
eendinto() 
{ 

} 

r 

cllar 'buf'p - vms_mesgbuf'; 

beopy((cllar f)&now, buf'p, •iseof now); 

buf'p +- •iseof now; 
beopy((cllar f)&:s, buf'p, •iweof s); 

buf'p +== •iseof s; 
bcopy((cllar f)&deficit, buf'p, •iweof deficit); 

buf'p +- aiseof defieit; 
bcopy( ( claar f)&etime, buf'p, •lseof etime ); 

buf'p +- •iseof etime; 
bcopy((cllar f)&nintv, buf'p, alseof nintv); 

write(msgsock, vms_mesgbuf', MESGBUFSIZE); 

• M011e the device name. ani. cloelc info into a flul/er ani. tlt.m •md it 

• all ofl to the client. 

•; 
send init() 
{ -

} 

claar 'buf'p - vms_initbuf'; 

beopy(dr_unit, buf'p, alseof dr_unit); 

buf'p +- •iseof dr unit; 
bcopy(&dr_name[ol[o):- buf'p, •lseof dr_name); 

buf'p +- •iseof dr name; 
beopy((cllar f)&hs, buf'p, •lseof hs); 

buf'p +- •i•eof hs; 
bcopy((cllar f)&phs, buf'p, •beof ph%); 

write{rmpock, vms_initbuf', INITBUFSIZE); 

oob 

sendinfo 

send_init 


